MA114 Summer 2018

Worksheet 23 - Calculus with Parametric Equations - 7/24/18

1. For the following parametric curves, find an equation for the tangent to the curve at the specified value of the parameter.
(a) $x=e^{\sqrt{t}}, y=t-\ln \left(t^{2}\right)$ at $t=1$
(b) $x=\cos (\mu)+\sin (2 \mu), y=\cos (\mu)$ at $\mu=\pi / 2$.
2. For each parametric curve, find $d y / d x$:
(a) $x=e^{\sqrt{s}}, y=s+e^{-s}$
(b) $x=t^{3}-12 t, y=t^{2}-1$
(c) $x=4 \cos (\omega), y=\sin (2 \omega)$
3. Find $d^{2} y / d x^{2}$ for the curve $x=7+t^{2}+e^{t}, y=\cos (t)+\frac{1}{t}, 0 \leq t \leq \pi$.
4. Find the arc length of the following curves:
(a) $x=1+3 t^{2}, y=4+2 t^{3}, 0 \leq t \leq 1$.
(b) $x=4 \cos (\theta), y=4 \sin (\theta), 0 \leq \theta \leq 2 \pi$.
(c) $x=3 v^{2}, y=4 v^{3}, 1 \leq v \leq 3$.
